Edge AI Memory • For Robots, Drones & IoT

AI Memory for the EdgePrivate, Fast, Offline

Bring persistent memory to robots, drones, IoT devices, and defence systems—running entirely on-device. No cloud latency, no connectivity required, no data leaving your edge.

Edge-Native: 4MB binary, <100ms retrieval, works offline •Stack: Rust + RocksDB + Vamana HNSW + ONNX Runtime + llama.cpp •Targets: Drones, Robots, Industrial IoT, Defence

4MB
Binary Size
<100ms
Startup Time
0%
Cloud Dependency
28
REST APIs

Why Edge Devices Need Local Memory

Robots, drones, and IoT devices can't wait for cloud APIs. They need instant, offline intelligence.

Cloud-Dependent Systems

Network Latency
200-500ms API roundtrip kills real-time decisions
Connectivity Required
Drone in remote field, robot in factory dead zone = system stops
Data Transmission Risk
Sensitive defence/industrial data sent to cloud servers
Per-API Costs
1000 robots × 10K queries/day = ₹4L+/month cloud bills

With Shodh Memory

Sub-100ms Response
Local RocksDB + Vamana index = real-time decisions
100% Offline Operation
Works in remote fields, factory floors, military zones—no internet needed
Air-Gapped Deployment
Classified defence data, sensitive industrial IP—stays on your edge devices
4MB Binary, Low Power
Rust efficiency = runs on resource-constrained edge devices

Enterprise-Grade Memory Features

Built with Rust for performance, designed for production, free for everyone

3-Tier Memory Hierarchy

Mimics human memory: Working → Session → Long-term with intelligent promotion

<1ms working memory, <10ms session, <100ms long-term retrieval

Knowledge Graph Intelligence

Track entities, relationships, and episodes with temporal validity

Graphiti-inspired architecture for complex knowledge modeling

100% Offline & Private

No cloud dependency, GDPR compliant by design, your data stays local

Multi-tenant isolation with user_id, agent_id, run_id, actor_id

Lightning Fast (Rust)

10x faster than Python alternatives, 4MB binary, <100ms startup

RocksDB storage with LZ4 compression, custom Vamana HNSW index

Multi-Modal Retrieval

5 search modes: Similarity, Temporal, Causal, Associative, Hybrid

ONNX Runtime + llama.cpp - bring your own embedding models

Enterprise-Ready

28 REST APIs, audit logging, compression, GDPR compliance

Production-grade with Docker deployment and web dashboard

Get Started in 2 Lines of Code

Simple Python API, auto-start server, instant memory

Native Python SDK (PyO3) - Zero IPC Overhead
# Install
pip install shodh-memory  # Coming soon

# Import and initialize (native PyO3 bindings)
import shodh_memory

memory = shodh_memory.MemorySystem(storage_path="./my_memory")

# Record experiences
memory.record(
    content="User prefers concise explanations with code examples",
    experience_type="learning",
    entities=["user", "preferences"]
)

memory.record(
    content="John Smith works at OpenAI on GPT-4 development",
    experience_type="discovery",
    entities=["John Smith", "OpenAI", "GPT-4"]
)

# Semantic search (hybrid mode)
results = memory.retrieve(
    query="user preferences for documentation",
    max_results=5,
    mode="hybrid"  # semantic, temporal, or hybrid
)

# Access results
for mem in results:
    print(f"{mem['content']} (importance: {mem['importance']:.2f})")

# Flush to disk before shutdown
memory.flush()

⚡ Native Performance: PyO3 Rust bindings - 5-10ms faster than REST API, zero IPC overhead, single process deployment.

🔧 Flexible: Bring your own embedding models via ONNX Runtime. Works with llama.cpp for local LLM inference.

Python SDK
pip install shodh-memory
Docker
docker-compose up
REST API
POST /api/record

Built For Real AI Applications

Where local memory makes the difference

Autonomous Drones

Drones that learn from every flight

Store obstacle maps, terrain data, mission parameters—no internet needed in remote areas

Example: Agricultural drone surveying fields remembers crop patterns, irrigation issues from previous flights. Works in areas with zero connectivity.

Defence & Military Systems

Mission-critical memory for secure operations

Air-gapped deployment, classified data stays on-device, complete audit trail for compliance

Example: Reconnaissance drone stores mission data locally. Tactical robots remember terrain, threats, patrol routes—all offline and secure.

Industrial Robotics

Factory robots with persistent knowledge

Assembly procedures, quality checks, maintenance logs—all stored locally on robot controllers

Example: Manufacturing robot recalls "Part X123 requires 45° angle, torque 12Nm" from assembly manual. Warehouse robot optimizes paths based on stored floor layouts.

IoT & Smart Devices

Edge intelligence without cloud

Smart city sensors, medical devices, surveillance systems—process and remember locally

Example: Smart city traffic sensor builds knowledge graph of congestion patterns. Medical IoT device stores patient context privately without cloud transmission.

How Shodh Memory Works

3-Tier memory hierarchy + Knowledge graph + Vector search

┌──────────────────────────────────────────────────────────────┐
│                    SHODH MEMORY SYSTEM                       │
│                                                              │
│  ┌────────────────────────────────────────────────────────┐  │
│  │           WORKING MEMORY (LRU Cache)                   │  │
│  │  • 100 most recent/frequent memories                   │  │
│  │  • Retrieval: <1ms                                     │  │
│  │  • High importance items (>0.4)                        │  │
│  └────────────────────────────────────────────────────────┘  │
│                          ↓↑                                  │
│  ┌────────────────────────────────────────────────────────┐  │
│  │           SESSION MEMORY (Size-Limited)                │  │
│  │  • 100MB current session context                       │  │
│  │  • Retrieval: <10ms                                    │  │
│  │  • Promotion threshold: importance >0.6                │  │
│  └────────────────────────────────────────────────────────┘  │
│                          ↓↑                                  │
│  ┌────────────────────────────────────────────────────────┐  │
│  │          LONG-TERM MEMORY (RocksDB)                    │  │
│  │  • Unlimited storage with LZ4 compression              │  │
│  │  • Retrieval: <100ms uncompressed, <200ms compressed   │  │
│  │  • Auto-compression after 7+ days                      │  │
│  └────────────────────────────────────────────────────────┘  │
│                                                              │
│  ┌────────────────────────────────────────────────────────┐  │
│  │         KNOWLEDGE GRAPH (Graphiti-Inspired)            │  │
│  │                                                        │  │
│  │  [Entity: John] ──WorksAt──> [Entity: OpenAI]         │  │
│  │        │                            │                  │  │
│  │        └──────Uses──────> [Entity: GPT-4]             │  │
│  │                                                        │  │
│  │  • Entities: Person, Org, Location, Tech, Concept     │  │
│  │  • Relationships: Temporal validity + confidence      │  │
│  │  • Episodes: Time-bounded context windows             │  │
│  └────────────────────────────────────────────────────────┘  │
│                                                              │
│  ┌────────────────────────────────────────────────────────┐  │
│  │         VECTOR INDEX (Custom Vamana HNSW)              │  │
│  │  • ONNX Runtime for embeddings (any model)             │  │
│  │  • Cosine similarity search                            │  │
│  │  • Model-agnostic (384, 512, 768, 1024, 1536 dims)     │  │
│  └────────────────────────────────────────────────────────┘  │
│                                                              │
└──────────────────────────────────────────────────────────────┘
                              ↕
                    ┌──────────────────┐
                    │   28 REST APIs   │
                    │  Python Client   │
                    │   Web Dashboard  │
                    └──────────────────┘

Intelligent Promotion

Memories automatically promoted based on 7-factor importance scoring

Knowledge Graphs

Extract entities and relationships automatically with temporal tracking

Auto-Compression

Old memories compressed automatically with LZ4 (2-5x) or semantic (10-50x)

Why Choose Shodh Memory?

Edge-native, offline alternative to cloud-based mem0 ($24M funding) and Zep (Graphiti)

FeatureShodh Memorymem0Zep
Speed (add memory)<1ms5-10ms10-20ms
Speed (semantic search)10-20ms100-200ms50-100ms
Deployment100% Edge/OfflineCloud-onlyHybrid
ConnectivityWorks OfflineRequires InternetRequires Internet
Memory Hierarchy3-Tier (Unique)Single-tierSingle-tier
Knowledge GraphYes (Graphiti)NoYes (Graphiti)
LanguageRustPythonTypeScript
Binary Size4MB200MB+50MB+
Air-Gapped SupportYesNoNo

Privacy-First Architecture

Unlike cloud-based alternatives, Shodh Memory runs 100% locally. Your data never leaves your machine. Perfect for healthcare, finance, legal, or any privacy-sensitive application. GDPR compliant by design with built-in "Right to be Forgotten" support.

Development Roadmap

Where we are and where we're going

Q1-Q3 2025Completed

Native Python SDK

PyO3 bindings completed - zero IPC overhead, 5-10ms faster than REST API

Q4 2025In Progress

Production Launch

JavaScript/TypeScript SDK, comprehensive documentation, ROS2 integration examples

Q1 2026Planned

Advanced Features

GraphQL API, Prometheus metrics, distributed tracing, advanced compression

Q2 2026Planned

Distributed Mode

Multi-node synchronization for distributed AI agent fleets via Zenoh

Q3 2026+Vision

Multi-Modal Memory

Image, audio, video embeddings for complete multi-modal memory systems

Bring Intelligence to the Edge

Deploy Shodh Memory on your robots, drones, and IoT devices. Production-ready, runs completely offline, no cloud required.